切换新版>>

海马论坛 >  发动机知识:机体组及曲柄连杆机构[zt]

发表于 2008-12-27 14:09    IP属地:湖北

三、连杆组
连杆组包括连杆体、连杆盖、连杆螺栓和连杆轴承等零件。习惯上常常把连杆体、连杆盖和连杆螺栓合起来称作连杆,有时也称连杆体为连杆。
1.连杆组的功用及工作条件
连杆组的功用是将活塞承受的力传给曲轴,并将活塞的往复运动转变为曲轴的旋转运动。连杆小头与活塞销连接,同活塞一起作往复运动;连杆大头与曲柄销连接,同曲轴一起作旋转运动,因此在发动机工作时连杆作复杂的平面运动。连杆组主要受压缩、拉伸和弯曲等交变负荷。最大压缩载荷出现在作功行程上止点附近,最大拉伸载荷出现在进气行程上止点附近。在压缩载荷和连杆组作平面运动时产生的横向惯性力的共同作用下,连杆体可能发生弯曲变形。
2.连杆组材料
连杆体和连杆盖由优质中碳钢或中碳合金钢,如45、40Cr、42CrMo或40MnB等模锻或辊锻而成。连杆螺栓通常用优质合金钢40Cr或35CrMo制造。一般均经喷丸处理以提高连杆组零件的强度。纤维增强铝合金连杆以其质量轻、综合性能好而备受注目。在相同强度和刚度的情况下,纤维增强铝合金连杆比用传统材料制造的连杆要轻30%。
3.连杆构造
连杆由小头、杆身和大头构成。

1) 连杆小头
小头的结构形状取决于活塞销的尺寸及其与连杆小头的连接方式。

在汽车发动机中连杆小头与活塞销的连接方式有两种,即全浮式和半浮式。全浮式活塞销工作时,在连杆小头孔和活塞销孔中转动,可以保证活塞销沿圆周磨损均匀。为防止活塞销两端刮伤气缸壁 ,在活塞销孔外侧装置活塞销挡圈。半浮式活塞销是用螺栓将活塞销夹紧在连杆小头孔内,这时活塞销只在活塞销孔内转动,在小头孔内不转动。小头孔不装衬套,销孔中也不装活塞销挡圈。

2) 连杆杆身
杆身断面为工字形,刚度大、质量轻、适于模锻。工字形断面的Y-Y轴在连杆运动平面内。有的连杆在杆身内加工有油道,用来润滑小头衬套或冷却活塞。如果是后者,须在小头顶部加工出喷油孔。

3) 连杆大头
连杆大头除应具有足够的刚度外,还应外形尺寸小,质量轻,拆卸发动机时能从气缸上端取出。连杆大头是剖分的,连杆盖用螺栓或螺柱紧固,为使结合面在任何转速下都能紧密结合,连杆螺栓的拧紧力矩必须足够大。

结合面与连杆轴线垂直的为平切口连杆,而结合面与连杆轴线成30°~60°夹角的为斜切口连杆。平切口连杆体大端的刚度较大,因此大头孔受力变形较小,而且平切口连杆制造费用较低。汽油机均采用平切口连杆。柴油机连杆既有平切口的也有斜切口的。一般柴油机由于曲柄销直径较大,因此连杆大头的外形尺寸相应较大,欲在拆卸时能从气缸上端取出连杆体,必须采用斜切口连杆。连杆盖装合到连杆体上时须严格定位,以防止连杆盖横向位移。平切口连杆利用连杆螺栓上一段精密加工的圆柱面与精密加工的螺栓孔来实现连杆盖的定位。斜切口连杆的连杆螺栓由于承受较大的剪切力而容易发生疲劳破坏。为此,应该采用能够承受横向力的定位方法。

4) 连杆螺栓
工作时连杆螺栓承受交变载荷,因此在结构上应尽量增大连杆螺栓的弹性,而在加工方面要精细加工过渡圆角,消除应力集中,以提高其抗疲劳强度。连杆螺栓用优质合金钢制造,如40Cr、35CrMo等。经调质后滚压螺纹,表面进行防锈处理。

4.V型发动机连杆
V型发动机左右两个气缸的连杆安装在同一个曲柄销上,其结构随安装形式的不同而不同。
1)并列连杆
两个完全相同的连杆一前一后并列地安装在同一个曲柄销上。连杆结构与上述直列式发动机的连杆基本相同,只是大头宽度稍小一些。并列连杆的优点是前后连杆可以通用,左右两列气缸的活塞运动规律相同。缺点是两列气缸沿曲轴纵向须相互错开一段距离,从而增加了曲轴和发动机的长度。
2)主副连杆
一个主连杆一个副连杆组成主副连杆,副连杆通过销轴铰接在主连杆体或主连杆盖上。一列气缸装主连杆,另一列气缸装副连杆,主连杆大头安装在曲轴的曲柄销上。主副连杆不能互换,且副连杆对主连杆作用以附加弯矩。两列气缸中活塞的运动规律和上止点位置均不相同。采用主副连杆的V型发动机,其两列气缸不需要相互错开,因而也就不会增加发动机的长度。
3)叉形连杆
指一列气缸中的连杆大头为叉形;另一列气缸中的连杆与普通连杆类似,只是大头的宽度较小,一般称其为内连杆。叉形连杆的优点是两列气缸中活塞的运动规律相同,两列气缸无需错开。缺点是叉形连杆大头结构复杂,制造比较困难,维修也不方便,且大头刚度较差。

[img]////image.xcar.com.cn/attachments/]

[每日热点]:【吃喝FB】马自达车友会共赴夏季户外烧烤派对...

回复本楼 | 评分 | 举报

发表于 2008-12-27 14:11    IP属地:湖北

四、曲轴飞轮组
(一)曲轴
1.曲轴的功用及工作条件
曲轴的功用是把活塞、连杆传来的气体力转变为转矩,用以驱动汽车的传动系统和发动机的配气机构以及其他辅助装置。曲轴在周期性变化的气体力、惯性力及其力矩的共同作用下工作,承受弯曲和扭转交变载荷。因此,曲轴应有足够的抗弯曲、抗扭转的疲劳强度和刚度;轴颈应有足够大的承压表面和耐磨性;曲轴的质量应尽量小;对各轴颈的润滑应该充分。
2.曲轴材料
曲轴一般由45、40Cr、35Mn2等中碳钢和中碳合金钢模锻而成,轴颈表面经高频淬火或氮化处理,最后进行精加工。现代汽车发动机广泛采用球墨铸铁曲轴。球墨铸铁价格便宜,耐磨性能好,轴颈不需硬化处理,同时金属消耗量少,机械加工量也少。为提高曲轴的疲劳强度,消除应力集中,轴颈表面应进行喷丸处理,圆角处要经滚压处理。
3.曲轴构造
曲轴基本上由若干个单元曲拐构成。一个曲柄销,左右两个曲柄臂和左右两个主轴颈构成一个单元曲拐。单缸发动机的曲轴只有一个曲拐,多缸直列式发动机曲轴的曲拐数与气缸数相同,V型发动机曲轴的曲拐数等于气缸数的一半。将若干个单元曲拐按照一定的相位连接起来再加上曲轴前、后端便构成一根曲轴。多数发动机的曲轴,在其曲柄臂上装有平衡重。按单元曲拐连接方法的不同,曲轴分为整体式和组合式两类。

4.曲拐布置与多缸发动机的工作顺序
各曲拐的相对位置或曲拐布置取决于气缸数、气缸排列形式和发动机工作顺序。当气缸数和气缸排列形式确定之后,曲拐布置就只取决于发动机工作顺序。在选择发动机工作顺序时,应注意以下几点:
1)应该使接连作功的两个气缸相距尽可能的远,以减轻主轴承载荷和避免在进气行程中发生抢气现象。
2)各气缸发火的间隔时间应该相同。发火间隔时间若以曲轴转角计则称发火间隔角。在发动机完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次。对于气缸数为 i 的四冲程发动机,其发火间隔角应为720°/i,即曲轴每转720°/i 时,就有一缸发火作功,以保证发动机运转平稳。
3)V型发动机左右两列气缸应交替发火。
四冲程直列四缸发动机的发火间隔角为720°/4=180°。4个曲拐在同一平面内。发动机工作顺序为1-3-4-2或1-2-4-3,其工作循环见表2-1和表2-2。

四冲程直列四缸发动机工作循环表

四行程直列六缸发动机的发火顺序和曲拐布置:四行程直列六缸发动机发火间隔角为720°/6=120°,六个曲拐分别布置在三个平面内,发火顺序是1-5-3-6-2-4,其工作循环表见表2-3。

四冲程V型六缸发动机的发火间隔角仍为120°,3个曲拐互成120°。工作顺序R1-L3-R3-L2-R3-L1。面对发动机的冷却风扇,右列气缸用R表示,由前向后气缸号分别为R1、R2、R3;左列气缸用L表示,气缸号分别为L1、L2和L3,工作循环见表2-4。

四冲程V8发动机的发火间隔角为720°/8=90°, 4个曲拐互成90°。工作顺序基本上有两种:R1-L1-R4-L4-L2-R3-L3-R2和L1-R4-L4-L2-R3-R2-L3-R1

(二)曲轴前、后端密封
曲轴前端借助甩油盘和橡胶油封实现密封。发动机工作时,落在甩油盘上的机油,在离心力的作用下被甩到定时传动室盖的内壁上,再沿壁面流回油底壳。即使有少量机油落到甩油盘前面的曲轴上,也会被装在定时传动室盖上的自紧式橡胶油封挡住。

曲轴后端的密封装置。由于近年来橡胶油封的耐油、耐热和耐老化性能的提高,在现代汽车发动机上曲轴后端的密封越来越多地采用与曲轴前端一样的自紧式橡胶油封。自紧式油封由金属保持架、氟橡胶密封环和拉紧弹簧构成。

三)曲轴扭转减振器
当发动机工作时,曲轴在周期性变化的转矩作用下,各曲拐之间发生周期性相对扭转的现象称为扭转振动,简称扭振。当发动机转矩的变化频率与曲轴扭转的自振频率相同或成整数倍时,就会发生共振。共振时扭转振幅增大,并导致传动机构磨损加剧,发动机功率下降,甚至使曲轴断裂。为了消减曲轴的扭转振动,现代汽车发动机多在扭转振幅最大的曲轴前端装置扭转减振器。汽车发动机多采用橡胶扭转减振器、硅油扭转减振器和硅油橡胶扭转减振器等。
1.橡胶扭转减振器
减振器壳体与曲轴连接,减振器壳体与扭转振动惯性质量粘结在硫化橡胶层上。发动机工作时,减振器壳体与曲轴一起振动,由于惯性质量滞后于减振器壳体,因而在两者之间产生相对运动,使橡胶层来回揉搓,振动能量被橡胶的内摩擦阻尼吸收,从而使曲轴的扭振得以消减。橡胶扭转减振器结构简单,工作可靠,制造容易,在汽车上广为应用。但其阻尼作用小,橡胶容易老化,故在大功率发动机上较少应用。

2.硅油扭转减振器
由钢板冲压而成的减振器壳体与曲轴连接。侧盖与减振器壳体组成封闭腔,其中滑套着扭转振动惯性质量。惯性质量与封闭腔之间留有一定的间隙,里面充满高粘度硅油。当发动机工作时,减振器壳体与曲轴一起旋转、一起振动,惯性质量则被硅油的粘性摩擦阻尼和衬套的摩擦力所带动。由于惯性质量相当大,因此它近似作匀速转动,于是在惯性质量与减振器壳体间产生相对运动。曲轴的振动能量被硅油的内摩擦阻尼吸收,使扭振消除或减轻。硅油扭转减振器减振效果好,性能稳定,工作可靠,结构简单,维修方便,所以在汽车发动机上的应用日益普遍。但它需要良好的密封和较大的惯性质量,致使减振器尺寸较大。

3.硅油—橡胶扭转减振器
硅油—橡胶扭转减振器中的橡胶环6主要作为弹性体,并用来密封硅油和支撑惯性质量1。在封闭腔内注满高粘度硅油。硅油—橡胶扭转减振器集中了硅油扭转减振器和橡胶扭转减振器二者的优点,即体积小、质量轻和减振性能稳定等。
四)飞轮
对于四冲程发动机来说,每四个活塞行程作功一次,即只有作功行程作功,而排气、进气和压缩三个行程都要消耗功。因此,曲轴对外输出的转矩呈周期性变化,曲轴转速也不稳定。为了改善这种状况,在曲轴后端装置飞轮。
飞轮是转动惯量很大的盘形零件,其作用如同一个能量存储器。在作功行程中发动机传输给曲轴的能量,除对外输出外,还有部分能量被飞轮吸收,从而使曲轴的转速不会升高很多。在排气、进气和压缩三个行程中,飞轮将其储存的能量放出来补偿这三个行程所消耗的功,从而使曲轴转速不致降低太甚。
除此之外,飞轮还有下列功用:飞轮是摩擦式离合器的主动件;在飞轮轮缘上镶嵌有供起动发动机用的飞轮齿圈2;在飞轮上还刻有上止点记号,用来校准点火定时或喷油定时以及调整气门间隙。

五、 汽车发动机滑动轴承
汽车发动机滑动轴承有连杆衬套、连杆轴承、主轴承和曲轴止推轴承等。
1.连杆轴承和主轴承
连杆轴承和主轴承均承受交变载荷和高速摩擦,因此轴承材料必须具有足够的抗疲劳强度,而且要摩擦小、耐磨损和耐腐蚀。
连杆轴承和主轴承均由上、下两片轴瓦对合而成。每一片轴瓦都是由钢背和减摩合金层或钢背、减摩合金层和软镀层构成,前者称为二层结构轴瓦,后者称三层结构轴瓦。钢背是轴瓦的基体,由1~3mm厚的低碳钢板制造,以保证有较高的机械强度。在钢背上浇铸减摩合金层,减摩合金材料主要有白合金、铜基合金和铝基合金。白合金也叫巴氏合金,应用较多的锡基白合金减摩性好,但疲劳强度低,耐热性差,温度超过100℃硬度和强度均明显下降,因此常用于负荷不大的汽油机。铜铅合金的突出优点是承载能力大,抗疲劳强度高,耐热性好。但磨合性能和耐腐蚀性差。为了改善其磨合性和耐腐蚀性,通常在铜铅合金表面电镀一层软金属而成三层结构轴瓦,多用于高强化的柴油机。铝基合金包括铝锑镁合金、低锡铝合金和高锡铝合金。含锡20%以上的高锡铝合金轴瓦因为有较好的承载能力、抗疲劳强度和减摩性能而被广泛地用于汽油机和柴油机。软镀层是指在减摩合金层上电镀一层锡或锡铅合金,其主要作用是改善轴瓦的磨合性能并作为减摩合金层的保护层。

轴瓦在自由状态时,两个结合面外端的距离比轴承孔的直径大,其差值称为轴瓦的张开量。在装配时,轴瓦的圆周过盈变成径向过盈,对轴承孔产生径向压力,使轴瓦紧密贴合在轴承孔内,以保证其良好的承载和导热能力,提高轴瓦工作的可靠性和延长其使用寿命。
[img]////image.xcar.com.cn/attachments/]

[每日热点]:【保养维护】修理途锐中央扶手箱...

回复本楼 | 评分 | 举报

发表于 2008-12-27 14:12    IP属地:湖北

2.曲轴止推轴承
汽车行驶时由于踩踏离合器而对曲轴施加轴向推力,使曲轴发生轴向窜动。过大的轴向窜动将影响活塞连杆组的正常工作和破坏正确的配气定时和柴油机的喷油定时。为了保证曲轴轴向的正确定位,需装设止推轴承,而且只能在一处设置止推轴承,以保证曲轴受热膨胀时能自由伸长。曲轴止推轴承有翻边轴瓦、半圆环止推片和止推轴承环3种形式。
翻边轴瓦(是将轴瓦两侧翻边作为止推面,在止推面上浇铸减摩合金。轴瓦的止推面与曲轴止推面之间留有0.06~0.25mm的间隙,从而限制了曲轴轴向窜动量。

半圆环止推片一般为四片,上、下各两片,分别安装在机体和主轴承盖上的浅槽中,用定位舌或定位销定位,防止其转动。装配时,需将有减摩合金层的止推面朝向曲轴的止推面,不能装反。止推轴承环为两片止推圆环,分别安装在第一主轴承盖的两侧。

现代轿车特别重视乘坐的舒适性和噪声水平,为此必须将引起汽车振动和噪声的发动机不平衡力及不平衡力矩减小到最低限度。在曲轴的曲柄臂上设置的平衡重只能平衡旋转惯性力及其力矩,而往复惯性力及其力矩的平衡则需采用专门的平衡机构。
当发动机的结构和转速一定时,一阶往复惯性力与曲轴转角的余弦成正比,二阶往复惯性力与二倍曲轴转角的余弦成正比。发动机往复惯性力的平衡状况与气缸数、气缸排列形式及曲拐布置形式等因素有关。
现代中级和普及型轿车普遍采用四冲程直列四缸发动机。平面曲轴的四缸发动机的一阶往复惯性力、一阶往复惯性力矩和二阶往复惯性力矩都平衡,惟二阶往复惯性力不平衡。为了平衡二阶往复惯性力需采用双轴平衡机构。两根平衡轴与曲轴平行且与气缸中心线等距,旋转方向相反,转速相同,都为曲轴转速的二倍。两根轴上都装有质量相同的平衡重,其旋转惯性力在垂直于气缸中心线方向的分力互相抵消,在平行于气缸中心线方向的分力则合成为沿气缸中心线方向作用的力,与 FjII 大小相等,方向相反,从而使 FjII 得到平衡。

[img]////image.xcar.com.cn/attachments/]

[每日热点]:【保养维护】为垂死挣扎的老宝续命 老宝来大保养...

回复本楼 | 评分 | 举报